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Two-dimensional cascades and mixing:
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We develop an analysis of the two-dimensional cascade of a tracer (passive or active
Lagrangian-conserved scalar), locally in space and time, and establish connections
with the modelling of turbulent mixing. We define a local scale-to-scale flux of tracer
variance based on the dynamics of tracer increments. This flux reduces at small scales
to the production or destruction rate of tracer gradients by stirring as a function
of their local orientation with respect to the compressional axis of the strain-rate
tensor. The local detailed budget of tracer variance on which this approach is based
is compared to the global statistical budget expressed by Yaglom’s equation. The
spatial pattern of the local transfers produced by a numerical simulation as well as
their statistical distribution are discussed.

We then address the problem of the parameterization of turbulent mixing. We
consider an anisotropic tensor diffusivity proportional to the velocity gradients. In
this model the tracer dissipation involves the axes of the strain-rate tensor and we
shall refer to it as strain diffusivity. We show analytically that it locally matches the
scale-to-scale flux through the cutoff scale. This matching is studied numerically in
decaying two-dimensional turbulence. A comparison is made with eddy diffusivity
and hyperdiffusivity. The presence of a numerical instability and ways to suppress it
are discussed from numerical and fundamental points of view.

We consider the special case of vorticity, an active scalar in two dimensions. When
applied to vorticity, models affect the energy budget. The two-dimensional inverse
energy cascade requires that parameterizations conserve energy and we show that
strain diffusivity conserves energy. We finally study the sensitivity of the large scales
of the flow to the operator used on vorticity in forced stationary simulations. Strain
diffusivity is found to produce more realistic spectral features than hyperviscosity.

1. Introduction
Mixing is a fundamental process involved in the transport properties of flows, and

especially of turbulent flows. In this respect, two-dimensional turbulent mixing is of
special interest, both for its theoretical originality and because it is a good conceptual
basis from which to understand the transport and mixing properties of geophysical
flows (Pedlosky 1979; Rhines 1979). From a Lagrangian viewpoint, mixing is related
to the process by which two initially separated particles come very close to each other
(Crisanti et al. 1990). From a Eulerian viewpoint, the signature of mixing is a decrease
of the variance of the tracer field. In terms of a turbulent cascade in Fourier space
in the sense of Obukhov–Corrsin–Batchelor theory (Obukhov 1949; Corrsin 1951;
Batchelor 1959), the tracer variance is transferred from small wavenumbers to high
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wavenumbers by the stirring action of the advecting flow that creates smaller and
smaller scales of the tracer field. Due to the resulting spectral flux of tracer variance,
the tracer variance contained in any bounded domain of wavenumbers decreases. As
a consequence, in a Eulerian observation with finite resolution, the conserved quantity
carried by two particles that approach each other is averaged over the resolved scale,
resulting in an irreversible loss of information. Now, even if the cascade stops at
some finite wavenumber due to a non-zero molecular diffusivity, this diffusive scale
is often unreachable in direct numerical simulations. Thus from a practical point of
view, limitations on resolution imply that the mixing process must be parameterized
introducing in the advection equation artificial terms designed to destroy the resolved
tracer variance. This is often done using an ad hoc eddy diffusivity, in analogy with
molecular diffusivity (Smagorinsky 1963).

It is well established in the theory of geophysical fluid dynamics that molecular
diffusion usually acts at scales much smaller than required by the two-dimensional
assumption. Therefore the two-dimensional Laplacian operator, although often con-
sidered more physical, is actually an eddy diffusivity, a parameterization among the
various available ones. Many parameterizations such as eddy diffusivity and hyper-
diffusivity (Basdevant et al. 1981) essentially rely on the very successful concept of
a turbulent cascade in Fourier space. However Fourier analysis merely deals with
amplitudes and spatial averages, missing the geometry and local details of the flow
which might be relevant. This was a motivation for recent work focusing on the
physical space properties of the cascade. Much progress has been made recently in
this area, mainly in the analysis of the two-dimensional tracer gradient dynamics
and especially the dynamics of its orientation (Weiss 1991; Basdevant & Philipovitch
1994; Hua & Klein 1998; Protas, Babiano & Kevlahan 1999; Lapeyre, Klein & Hua
1999; Klein, Hua & Lapeyre 2000). One main conclusion of these studies is that
the cascade process is locally strongly anisotropic since tracer gradients tend to align
with preferred directions. This justifies further exploration of some of the mixing
properties of two-dimensional turbulence using an analysis based on the real space
cascade process.

The main purpose of this paper is to develop an analysis of the two-dimensional
tracer cascade, locally in space and time, and establish connections with the modelling
of turbulent mixing. We define a local scale-to-scale flux of tracer variance based on
the dynamics of tracer increments. This flux reduces at small scales to the production
or destruction rate of tracer gradients by stirring as a function of its local orientation
with respect to the compressional axis of the strain-rate tensor. The local detailed
budget of tracer variance on which this approach is based is compared to the global
statistical budget expressed by Yaglom’s equation (Yaglom 1949). The spatial pattern
of the local transfers produced by a numerical simulation as well as their statistical
distribution are discussed. We then address the problem of the parameterization of
turbulent mixing. We consider an anisotropic tensor diffusivity proportional to the
velocity gradients. In this model the tracer dissipation involves the axes of the strain-
rate tensor and we shall refer to it as strain diffusivity. We show analytically that
it locally matches the scale-to-scale flux through the cutoff scale. This matching is
studied numerically in decaying two-dimensional turbulence. A comparison is made
with isotropic eddy diffusivity and hyperdiffusivity. We finally consider the special case
of vorticity, an active tracer in two dimensions. When applied to vorticity, models
affect the energy budget. The two-dimensional inverse energy cascade (Kraichnan
1967; Paret & Tabeling 1997; Boffetta, Celani & Vergassola 2000; Dubos et al. 2001)
requires that parameterizations conserve the total energy (Basdevant et al. 1981) and
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we show that strain diffusivity conserves energy. We finally study the sensitivity of
the large scales of the flow to the operator used on vorticity in simulations of forced
stationary two-dimensional turbulence.

The paper is organized as follows. In § 2 we develop the analysis of the tracer
cascade based on the dynamics of tracer increments. In § 3 we address the problem
of the parameterization of turbulent mixing. Section 4 is devoted to the particular
case of two-dimensional vorticity. The conclusions are summarized and discussed
in § 5.

2. Tracer cascade in physical space
Let us first recall the basic concept of the turbulent cascade in spectral space

(Corrsin 1951; Batchelor 1959; Kraichnan 1971). It is based on the evolution of the
one-dimensional tracer spectrum ZT (k) in a forced and dissipated situation:

∂ZT (k)

∂t
+
∂ηT

∂k
= PT (k)− κk2ZT (k), (2.1)

ZT (k) ≡ 1

2

∫
‖k‖=k

|T (k)|2 dk, (2.2)

ηT (k) ≡
∫
‖k‖<k

T (k) · n∗T (k), (2.3)

where T (k) is the Fourier representation of the tracer field T (x), κ the molecular
diffusivity, PT (k) the variance input by forcing, ηT (k) the spectral flux of tracer
variance and nT (x) ≡ (u · ∇)T the convective term of the forced advection–diffusion
equation:

∂T

∂t
+ (u · ∇)T = κ∆T + fT , (2.4)

with u(x) the advecting velocity field and fT (x) the forcing.
The quadratic quantity associated with T is its variance ZT =

∫ ∞
0
Z(k) dk =∫

1
2
T 2 dx/V with V the volume (area) occupied by the fluid. The spectral picture

of the tracer cascade is then as follows. The forcing fT creates large-scale patches of
tracer and inputs variance at a rate PT (k). The stretching and folding action of the
advecting field creates structures (like filaments or fronts) of smaller and smaller scale.
Thus the stirring globally conserves the tracer variance and transfers it from large
scales (small wavenumbers) to small scales (high wavenumbers), at a rate measured by
the spectral flux ηT (k) which is expected to be directed towards small scales (positive).
When the transferred variance reaches a sufficiently small scale, the homogenizing
action of diffusion ultimately destroys it. But the existence of the cascade itself is a
convective process that takes place even in the absence of forcing and diffusion.

2.1. Dynamics of tracer increments

We develop an alternative picture of the cascade through the dynamics of tracer
increments. Indeed, structures of scale l can be detected through the magnitude of
the tracer difference over the distance l. We first focus for simplicity on the advection
terms of equation (2.4) then discuss the effect of forcing and diffusion in connection
with Yaglom’s equation. We finally consider the small-scale limit.
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Local flux of tracer variance

We consider the tracer increment δT (x, l) at position x and vector separation l
defined by δT ≡ T+ − T− where T±(x, l) ≡ T (x ± l/2), and more specifically its
magnitude measured by δT 2. Both δT and δT 2 are functions of the two vectors x
and l and obey in the present non-forced non-diffusive context:(

∂

∂t
+ u± · ∇

)
T± = 0,

(
∂

∂t
+U · ∇

)
δT = −δu

2
· ∇(T+ + T−),

where we have introduced the velocity increment δu ≡ u+− u− and the pair-averaged
velocity U ≡ (u+ +u−)/2, with u±(x, l) ≡ u(x ± l/2). Taking advantage of the relations
between derivatives in x and l (2∇lT± = ±∇xT±), we transform this equation into(

∂

∂t
+U · ∇x + δu · ∇l

)
δT = 0, (2.5)

(
∂

∂t
+U · ∇x + δu · ∇l

)
δT 2 = 0. (2.6)

Equation (2.6) is obtained by multiplying (2.5) by 2δT .
The form of the evolution equations of δT and δT 2 is familiar: they are transport

equations in the four-dimensional space (x, l). So while the tracer is transported in
physical space, its increment δT and its square δT 2 are transported both in physical
space at velocity U (x, l) and through scales at velocity δu(x, l). This interpretation
gives a simple picture of the scale-to-scale cascade.

The scale of a structure is a scalar l rather than a vector l. Thus we need to integrate
over the angular component φ of l. We do this by expressing (2.6) in polar coordinates
(l, φ) for l. First, using the incompressibility of δu with respect to l (∇l · δu = 0) the
gradients in (2.6) become divergences of fluxes:

∂

∂t
δT 2 + ∇x · (δT 2U ) + ∇l · (δT 2δu) = 0. (2.7)

In polar coordinates, the radial and azimuthal components of the velocity increment
are respectively its longitudinal component δu‖ ≡ l/l ·δu and its transverse component
δu⊥ ≡ (l/l × δu) · ez , with ez a unit vector orthogonal to the flow plane:

∂

∂t
δT 2 + ∇x · (δT 2U ) +

∂

l∂l
(lδT 2δu‖) +

∂

l∂φ
(δT 2δu⊥) = 0.

Integrating over the azimuthal angle φ we obtain

∂

∂t

∮
δT 2 dφ

2π
+ ∇x ·

∮
δT 2U

dφ

2π
+

∂

l∂l
l

∮
δT 2δu‖

dφ

2π
= 0. (2.8)

As in (2.6), the time evolution of
∮
δT 2dφ/2π results from two contributions: on

one hand a transport in physical space expressed by the x-divergence of the flux∮
δT 2Udφ/2π; on the other hand a transfer from scale to scale expressed by the

last term of (2.8). The flux
∮
δT 2δu‖dφ/2π is directed towards large scales since the

corresponding divergence is over l. In order to obtain a flux towards small scales that
has the dimension of the spectral flux ηT (k), we define F(x, l), the local flux of tracer
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variance from scales larger than l to scales smaller than l as

F(x, l) ≡ − 1

2l

∮
δu‖(x, l, φ)δT 2(x, l, φ)

dφ

2π

= − 1

2l

〈
δu‖δT 2

〉
φ
, (2.9)

where the brackets 〈 〉 indicate an average over the variable specified as index, here φ.

Connection with Yaglom’s equation

We now consider the full equation (2.4). In the presence of forcing and diffusion,
the budget equation (2.7) becomes (see Appendix A)(

∂

∂t
+U · ∇x + δu · ∇l − κ( 1

2
∆x + 2 ∆l)

)
δT 2

2
= δTδfT − (η+

T + η−T ), (2.10)

with ηT (x) ≡ κ ‖∇xT‖2
and η±T ≡ ηT (x± l/2). In such a forced and dissipated case, a

statistically stationary state may be reached. In this case we obtain, on expressing the
operators ∇l and ∆l in polar coordinates (l, φ) then averaging over the angle φ, the
position x and the time t:

d

l dl
l〈δT 2δu‖〉x, t, φ − κ

2l

d

dl
l

d

dl
〈δT 2〉x, t, φ = 2〈δTδfT 〉x, t, φ − 4〈ηT 〉x, t.

At a scale much smaller than the typical forcing scale, the forcing power 〈δTδfT 〉x, t, φ
can be neglected so that (after integrating over l) we recover the two-dimensional
Yaglom equation (Yaglom 1949):

〈δT 2δu‖〉x, t, φ + 2l〈ηT 〉x, t = 2κ
d

dl
〈δT 2〉x, t, φ. (2.11)

At convective scales l, the last diffusive term is negligible (Monin & Yaglom 1971)
and equation (2.11) further reduces to a balance between the flux F(x, l) due to
differential advection and tracer inhomogeneity (equation (2.9)) and destruction by
diffusion:

〈F(x, l)〉x, t = 〈ηT 〉x, t. (2.12)

Yaglom’s equation (2.12) expresses a global statistical balance between the stirring
that turns large-scale tracer patches into small-scale structures and diffusion that
destroys the latter. What we have shown here is that this balance can be made
meaningful locally in time and space for a single realization of the flow and tracer
field via the budget equations (2.8) and (2.10). This dynamical balance defines the
local flux F(x, l) by equation (2.9).

2.2. Small-scale limit: dynamics of tracer gradients

If we consider a scale at which the tracer and velocity fields are smooth (which is true
in particular for the velocity field in the direct enstrophy cascade range (Babiano,
Basdevant & Sadourny 1985), a Taylor expansion of equation (2.9) leads to

F(x, l) ≈ − l
2

4
∂iT∂iuj∂jT . (2.13)

The right-hand side of equation (2.13) is directly related to the growth of the tracer
gradients. This growth process is described by the Lagrangian evolution of the norm
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of the tracer gradient q = ∇T , obtained by taking the gradient of equation (2.4).
Focusing on the convective terms, one obtains

dq

dt

∣∣∣∣
stirring

= −ATq, (2.14)

dq2

dt

∣∣∣∣
stirring

= −qTSq = −2∂iT∂iuj∂jT , (2.15)

with Aij = ∂jui the velocity gradient, AT its transpose and Sij = ∂jui + ∂iuj the
strain-rate tensor (symmetric part of A). This tensor S involved in the tracer gradient
production rate −qTSq is traceless due to incompressibility and has two opposite
eigenvalues corresponding to the compressional axis (negative eigenvalue −σ) and
extensional axis (positive eigenvalue σ). Thus the sign of the production of tracer
gradients by stirring depends on the angle ζ between the tracer gradient q and the
compressional axis of the strain-rate tensor S:−qTSq = σq2 cos 2ζ. If this angle ζ
is less than 45◦, there will be production of gradients (positive right-hand side of
(2.15)), and vice versa. In a stationary state, the space–time average balance between
the production of gradients by stirring and their destruction by diffusion implies a
preferential alignment of the tracer gradient with the compressional axis, which is
indeed observed in (Protas et al. 1999). In more detail, it can be shown that the
evolution of ζ itself results from the competition between stretching and rotation
(Weiss 1991) or stretching and effective rotation (Lapeyre et al. 1999; Klein et al.
2000). This competition divides the flow into elliptic regions, where the gradients do
not grow, and hyperbolic regions, where ζ tends to be smaller than 45◦ and gradients
do grow.

The picture emerging from these studies is that a tracer field initially decorrelated
from the velocity field becomes deformed in such a way that geometrical alignment
properties arise and strong gradients are produced. This cascade process is essentially
advective, geometric (anisotropic), local and inhomogeneous in real space, due to the
presence and persistence of qualitatively different hyperbolic and elliptic domains. Its
magnitude and direction are determined locally by the production term (2.15). It is
not very surprising to find that the approaches based on gradients and increments
match at small scales. Relation (2.13) stresses the importance of the production rate
of tracer gradients as a simple local indicator of the cascade. While the latter is
relevant at the smallest scales reached by the cascade (the diffusive scale), the local
flux F(x, l) is relevant at any given scale l, and especially at convective scales identified
by relation (2.12).

2.3. Numerical experiment

We now discuss numerically the local flux of variance observed in a large-scale-
forced statistically stationary experiment at resolution 10242 containing in addition
to vorticity one passive tracer, both forced at wavenumber kI = 4 (see Appendix B
for details). The corresponding injection scale is lI = π/4 or 128 grid scales. The
flow is characterized by coherent vortices whose scale is roughly the forcing scale. We
compute the local fluxes F(x, l) defined by equation (2.9). Yaglom’s equation (2.12)
enables to estimate the range of convective scales. A scale l of 8 grid scales is found
to be convective. We discuss the statistical distribution of the transfers F(x, l) for this
scale and their spatial distribution.

The distribution of the values taken by the flux F(x, l) for the convective scale l
(l/lI = 8/128 = 0.06) is presented in figure 1. We observe that the average direction
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Figure 1. Probability distribution of the flux F(x, l) reduced by the average dissipation 〈ηT 〉x,
for a convective scale l of 8 grid steps.

of the cascade towards small scale results from cancellations between both direct and
inverse fluxes whose amplitude is large compared to the average flux 〈F(x, l)〉x ≈ 〈ηT 〉x.
The positive average results from a small asymmetry in favour of direct transfers.

The fields of passive tracer and local flux F(x, l) are displayed in figure 2. We focus
on a 300×400 region containing a pair of vortices. The local flux takes either positive
(direct cascade) or negative (inverse cascade) values and its amplitude can greatly
exceed its spatial average 〈F(x, l)〉x ≈ 〈ηT 〉x = 147. We can here distinguish between
two types of regions:

(i) The inner part of the vortices is divided into four quarters where the cascade
is alternatively direct and inverse. This quadrupolar structure is typical of elliptical
vortices (Kimura & Herring 2001). Inside a vortex, fluid elements follow quasi-elliptic
trajectories along which the net budget of the cascade is practically zero.

(ii) Outside the vortices, the tracer field consists of long filaments either stretched
or folded by the flow. The cascade is mostly direct (F(x, l) > 0) but is sometimes
reversed. To interpret this reversal, we plotted on the same graph the compressional
direction of the strain-rate tensor S . In the regions of direct cascade, filaments are
being formed by this compression and thus orthogonal to the compressional direction.
Conversely, the filaments in inverse cascade zones (centre of figure 2 for instance) are
parallel to the compressional axis. Thus these zones, rather, correspond to a folding
of the filaments.

3. Tracer cascade and the modelling of the turbulent ‘mixing’
The important distinction between stirring and mixing is based on the reversibility

of the processes. Stirring deals with the convective term of equation (2.4) and is a
formally reversible process that conserves the total tracer variance. Mixing on the
other hand is the irreversible process by which the tracer becomes homogenized,
resulting in a decrease of its variance. This is represented by the molecular diffusivity
κ in the advection–diffusion equation (2.4). However, both processes are intimately
linked. Pure diffusion in the absence of advection homogenizes the tracer very slowly
and inefficiently, and is considerably enhanced under strong stirring. Conversely, a
process analogous to mixing takes place when limitations due to resolution come into
play. Let us suppose that we are dealing with limited information from which small
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Figure 2. (a) Passive tracer and velocity (arrows) in a stationary, large-scale forced simulation.
(b) Corresponding transfers of variance computed for a scale l of 8 grid scales that belongs to the
convective range. Lines indicate the compressional direction of the flow. Zoom of a 300× 400 area
out of a 10242 box.
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scales have been filtered out by a spatial low-pass filter ϕ(l):

θ(x, t) = T ≡
∫
T (x+ l)ϕ(l) dl, (3.1)

v(x, t) = ū ≡
∫
u(x+ l)ϕ(l) dl. (3.2)

Then if T obeys pure transport (equation (2.4) without forcing nor diffusion), the
direct tracer cascade progressively empties the large scales of T to the benefit of its
small scales, which are absent from θ. Subsequently, the variance of θ decreases at
a rate approximately given by the spectral flux of tracer variance through the cutoff
wavenumber kc:

d

dt

∫
θ2

2
dx ≈ −ηT (kc). (3.3)

This decrease implies that θ does not obey a pure advection equation:

∂θ

∂t
+ (v · ∇) θ = (v · ∇) θ − (u · ∇)T ≡M[θ] 6= 0. (3.4)

Thus the right-hand side M[θ] of (3.4) must be modelled.† It is a linear operator in θ
since the whole problem is linear in T and θ. Furthermore its spatial average is zero
due to incompressibility.

However, the process by which the variance of θ decreases is not strictly speaking
mixing. It results from the combined effect of the direct cascade and coarse graining,
but does not tell us anything about the small-scale homogenization of the tracer. We
will be interested here in the problem of properly modelling the right-hand side of
(3.4), which we call modelling the turbulent ‘mixing’.

In what follows we consider an anisotropic diffusivity, the properties of which we
derive. We argue that this subgrid model should reproduce the tracer cascade not
only on average as in equation (3.3) but locally in physical space. We then check this
numerically and compare with usual isotropic parameterization: eddy diffusivity and
hyperdiffusivity.

3.1. Strain diffusivity

At a basic level, one expects from a subgrid model that equation (3.3) be respected,
thus following the spectral picture of a cascade directed on average towards small
scales. Many models are able to cause such an average decrease of the resolved tracer
variance. Popular ones are the eddy diffusivity model and the hyperdiffusivity model:

Meddy[θ] ≡ ∇ · (κeddy∇θ),

MH [θ] ≡ −κ∗(−∆)pθ,

with p the order of the hyperdiffusivity. The models Meddy and MH are not derived
from first principles but based on the requirement of a global decrease of the tracer
variance. It is however possible to derive a model from equations (3.1), (3.2) and
(3.4) for a Gaussian filter of width l0, ϕ(l) = exp(−l2/2l20)/2πl20 . A formal procedure
consists in recovering the full fields T and u from the resolved fields θ and v. Using

† Notice that we are not concerned here with the modelling of unresolved processes (instabilities,
wave breaking, etc.) but only with the effects of stirring.
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a Taylor expansion in equations (3.1) and (3.2) one obtains

θ ≈ T +
l20
2

∆T ⇒ T ≈ θ − l20
2

∆θ, (3.5)

v ≈ u+
l20
2

∆u⇒ u ≈ v − l20
2

∆v. (3.6)

The evolution equation of θ is then obtained by substituting (3.5) and (3.6) in (3.4):

dθ

dt
+ l20∂i(∂jui∂jθ) = 0. (3.7)

This short formal deconvolution method is used in Moeleker & Leonard (2000). The
derivation in Dubos (2001) is based on a more physical estimate of the effects of
differential advection (velocity increments) using Taylor expansions. The resulting
model Msd is equivalent to using an anisotropic tensor diffusivity κij proportional to
the velocity gradient: Msd[θ] = ∇ · (κij∂jθ) with κij = −l20∂jui. Multiplying (3.7) by θ,
we obtain the evolution of the resolved variance:

d

dt

θ2

2
+ l20∂i

(
∂jui∂j

θ2

2

)
= l20∂iθ∂iuj∂jθ ≡ −ηsd
≈ −F(x, 2l0). (3.8)

Thus the local decrease of the tracer variance (right-hand side of equation (3.8)) is
proportional to the creation rate of tracer gradients and involves the strain-rate tensor
S (equation (2.15)). We shall refer to this model as strain diffusivity. Furthermore, we
see here that the transfer of variance to smaller scales is reproduced not only globally
but locally by strain diffusivity: the local decrease of tracer variance is approximately
given by the local flux F(x, 2l0), according to equation (2.13).

To summarize, the local decrease of the tracer variance given by the right-hand
side of equation (3.8) is closely linked to the creation of small scales diagnosed by
equation (2.15) (Dubos 2001). In this way strain diffusivity takes advantage of the
geometry of the tracer and velocity fields being dissipative in hyperbolic domains
(positive right-hand side of (3.8) due to the growth of the tracer gradients) and
essentially conservative in elliptic domains (weak right-hand side of (3.8)). In addition
it reproduces not only globally but at a fine-grained level the transfers of tracer
variance induced by the turbulent cascade.

3.2. Numerical experiment

We study the spatial organization of, on one hand, the local transfer F(x, l) defined
by equation (2.9) and, on the other hand, the tracer variance dissipation rate induced
by strain diffusivity. We make a comparison with popular subgrid-scale parameteri-
zations: isotropic diffusivity κ∆θ, and iterated Laplacian −κ∗(−∆)pθ with p = 2, 8.

To achieve this, we performed a numerical simulation of decaying turbulence
including in addition to the vorticity field several passive tracers, each of them
using one of the previously mentioned parameterizations. The numerical values of the
parameters are summarized in Appendix B. All tracers have the same initial condition
and the simulation is run during 40 turnover times. The large scales of the final tracer
fields are close enough to each other so that a comparison can be made, while the
length of the simulation ensures that the parameterization has eventually imprinted
its own feedback on the small-scale structure of the tracer field. The resolution is
5122.
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Strain diffusivity is proportional to the tensor of velocity gradients Aij = ∂jui. Its
symmetric part is the strain-rate tensor S , which has two eigenvalues of opposite sign,
inducing positive diffusivity along the compressional axis and negative diffusivity
along the extensional axis. This negative diffusivity is a potential source of instability
which we had to suppress by adding a small amount of dissipation. We used an
iterated Laplacian in addition to the strain diffusivity and we checked that the
additional dissipation is less that 30% the dissipation due to strain diffusivity, so that
the latter is playing the major role. This point is discussed in more detail later in this
paper.

The tracer variance dissipation induced by strain diffusivity is

ηsd = −l20∂iθ∂iuj∂jθ.
The classical isotropic diffusivity has a dissipation rate

ηeddy = κeddy ‖∇θ‖2
.

Finally, for the iterated Laplacian of order p, the local dissipation rate is

ηH = κH
∑
i1 ... ip

(∂i1 ... ipθ)2.

We focus in figure 3(a) on a vortex pair. The local tracer variance transfer F(x, l)
for a scale l of 8 grid sizes is displayed in figure 3(b). It is found again to take
both positive and negative values, while keeping a positive spatial average. It can
be checked in figure 3(d ) that strain diffusivity is able to reproduce fairly well these
sign changes and the general organization of the transfers, while isotropic diffusivity
(figure 3c), being everywhere positive, cannot. This reflects the fact that isotropic
diffusivity is only connected to the presence of gradients, while strain diffusivity is
connected to the local dynamical process of their growth – or decay. Figure 3(e, f )
displays the analogous fields for the iterated Laplacian. In addition to being by
construction everywhere positive, they show little relation with the structure of the
transfers. This is not very surprising since these operators are valued not for their
real space properties but for their Fourier space properties, where they extend inertial
ranges. The counterpart is that their action is essentially uniform, not taking into
account the dynamical contrasts of the flow.

Complementary information concerning the auxiliary diffusion

As mentioned above, we checked that the additional dissipation is globally less
than 30% of the dissipation due to strain diffusivity. It is useful to make this global
estimate more precise by a local analysis. We correlated the local dissipation rate
induced by strain diffusivity ηsd on one hand and by the auxiliary hyperdiffusivity ηaux
on the other hand (figure 4). The former, being proportional to the growth rate of the
tracer gradient, is at the same time a local indicator of the cascade dynamics. The two
contributions appear highly uncorrelated and ηsd mostly dominates ηaux: points for
which ηaux > |ηsd| represent 30% of the total and are characterized by values of ηsd
close to 0. As complementary information that is more quantitative, we computed the
conditional average of ηaux with respect to ηsd, E(ηaux | ηsd) (also shown on figure 4).
This average behaves differently in regions where the gradients grow (ηsd > 0) or
decay (ηsd < 0): it is essentially uniform in the latter region, and varies with ηsd when
ηsd > 0, reaching a maximum where gradients grow fastest. This is consistent with the
fact that regions of fast growing gradients are also regions of strong gradients, hence
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(a) Tracer field (b) Tracer variance transfer field

(c) Isotropic diffusivity (d ) Strain diffusivity

(e) Bilaplacian ¢2 ( f ) Iterated Laplacian ¢8

–60

–40

–20

0

20

40

–10

–8

–6

–4

–2

0

2

4

6

8

10

–10

–8

–6

–4

–2

0

2

4

6

8

10

–10

–8

–6

–4

–2

0

2

4

6

8

10

–10

–8

–6

–4

–2

0

2

4

6

8

10

–10

–8

–6

–4

–2

0

2

4

6

8

10

Figure 3. (a) Tracer field (zoomed) and velocity field (arrows) in a numerical simulation of freely
decaying turbulence using strain diffusivity. The tracer is reduced by its root-mean-square. (b) Local
variance transfer field F(x, l) (l is 8 grid scales). Transfers are reduced by their (positive) average
value. Local transfers range from negative (locally reversed cascade) to positive (direct cascade)

values. (c–f ) Tracer variance dissipation fields ηT (x): (c) isotropic diffusivity ηeddy = κ ‖∇θ‖2
, (d )

strain diffusivity ηsd = −l20∂iθ∂iuj∂jθ, (e, f ) iterated Laplacian of order p = 2, ηH =
∑

ij(∂ijθ)2 (e)

and p = 8, ηH =
∑

i1 ... i8
(∂i1 ... i8θ)2 ( f ). Dissipations are reduced by their spatial averages.
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Figure 4. Scatter plot of dissipation produced by strain diffusivity ηsd = −l20∂iθ∂iuj∂jθ and
auxiliary hyperdiffusivity ηaux. Dashed line: conditional average of ηaux = κH

∑
i1 ... ip

(∂i1 ... ip θ)2 relative

to ηsd. Dotted line: ηaux = |ηsd|. In order to compare their magnitudes, dissipations are both reduced
by the spatial average of ηsd.

of large ηaux.† Finally, we computed the reciprocal conditional average E(ηsd | ηaux)
and checked that E(ηsd | ηaux) > 2ηaux except when E(ηsd | ηaux) < 0, which is achieved
only for the smallest values of ηaux (not shown).

To summarize, the auxiliary diffusion is highly uncorrelated with the strain diffu-
sivity, is dominated by it in most of the flow, and has an essentially uniform action in
antidiffusive regions (ηsd < 0) and a slightly modulated action in the diffusive regions
(ηsd > 0).

More sophisticated techniques may be required to suppress this instability in
a more rigorous manner. One may consider completing the model with an ad-
ditional diffusivity, as we did in an ad hoc way or based on more physical grounds.
An alternative is to keep the model as is and design adapted numerical schemes,
based on particles (Moeleker & Leonard 2000) or wavelets (Leonard 1997) for
instance. One should be aware that these numerical schemes include implicit dif-
fusion anyway. The situation here is that the model is obtained in a deterministic
framework, e.g. including solely the (reversible) Euler equation and proper approxi-
mations. As a result, the model is formally reversible but in practice irreversible: in
a turbulent flow, the global trend for tracer gradients to grow implies that strain
diffusivity has a globally diffusive action (

∫
ηsd dx > 0) despite its reversible ex-

pression (3.7). However, the model presents a numerical instability that can be
suppressed by adding either explicit or implicit diffusion as in (Laval, Dubrulle &
Nazarenko 2001). The question is whether this irreversible diffusion is a funda-
mental part of the model representing a long-term trend (in which case it should
be explicit and physically based as in Bouchet 2001) or a necessary evil stemming
from numerical requirements (in which case a minimal, ad hoc, implicit or explicit

† This is a qualitative argument since ηaux is not directly connected to the tracer gradient but to
higher-order derivatives.
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diffusion should be best). We do not address here this question and consider that
the pragmatic technique we used is sufficient for the specific goals of the present
study.

4. The double cascade and the mixing of vorticity/momentum
Vorticity in two dimensions is a tracer: it is conserved along Lagrangian trajectories.

But when one applies a subgrid-scale parameterization to the transport of vorticity,
the velocity equation and energy budget are affected. It is of course desirable that this
impact of the parameterization respect the scale-to-scale transfers of energy, which are
robustly known to be towards large scales in the energy cascade range, and to vanish
in the enstrophy cascade range, in the inviscid limit. Therefore it is required that
the parameterization globally conserves energy. It is well known that an (eventually
iterated) Laplacian always dissipates energy. Iterated Laplacians with high-order p
dissipate less energy, and this is a reason why they may be preferred to a Laplacian
(in addition to their capacity to extend inertial ranges). However, a small dissipation
is not conservation, and attempts have been made to strictly fulfil this conservation
requirement. A result is the anticipated potential vorticity method (APVM, Basdevant
et al. 1981) which unfortunately is not frame invariant. In other words, the mixing
of momentum (subgrid-scale terms for velocity) is supposed to conserve energy while
the mixing of vorticity is supposed to dissipate enstrophy; of course both types of
mixing are tightly connected, which makes the problem difficult. We investigate here
the properties of strain diffusivity in this respect.

4.1. Strain diffusivity and energy

To derive the energy budget with strain diffusivity applied to vorticity, we need to
know the equation for velocity corresponding to

∂ω

∂t
+ ∂i(viω + l20∂jω∂jvi) = 0. (4.1)

It is enough to show, following Dubos (2001), that this equation is the curl of

∂vk

∂t
+ ∂i(vivk + l20∂jvi∂jvk) + ∂kΠ = 0, (4.2)

with Π the coarse-grained pressure. Since ω = Jkl∂lvk with Jkl the unit antisymmetric
matrix, we obtain, taking the curl of equation (4.2),

dω

dt
+ l20∂i(∂jω∂jvi) + Jkl(∂lvi∂ivk + l20∂jlvi∂ijvk) = 0. (4.3)

Now the term Jkl∂lvi∂ivk is simply the vortex stretching term which is known to vanish
in two dimensions. The last term also vanishes because

∂jlvi∂ijvk = ((∂xxvx)
2 + (∂yyvy)

2)δkl

and Jklδkl = 0. Thus equation (4.3) indeed reduces to (4.1) and the coarse-grained
vorticity formally behaves as a passive tracer (including strain diffusivity) provided that
the coarse-grained velocity also diffuses with the same space-dependent anisotropic
diffusivity. This is a non-trivial result since a space-dependent diffusivity results in
general in a term proportional to the diffusivity gradient in the vorticity equation. Here,
both the particular expression for the diffusivity and the two-dimensionality allow such
cancellations that this term vanishes. We have here a space-dependent diffusive-like
operator that can be consistently applied to tracers, velocity and vorticity.
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The energy budget is then obtained by multiplying equation (4.2) by vk:

∂

∂t
v2 + ∂i(viv

2 + l20∂jvi∂j(v
2) + 2viΠ) = 2l20∂ivk∂jvk∂jvi (4.4)

but due to the two-dimensionality of the flow, we have

∂ivk∂jvi =
ω2 − σ2

4
δjk,

which combined with the incompressibility constraint leads to a vanishing right-hand
side in (4.4). Strain diffusivity is thus an energy-conserving, enstrophy-dissipating
operator.

4.2. Numerical experiments

The problem of the conservation of energy is most critical in a situation where
vorticity/velocity is forced at a scale close to the grid scale. Such a choice is common
when one wants to study the stationary inverse energy cascade. In the case where a
dissipative operator like a Laplacian or even a high-order hyperlaplacian is used, the
small-scale dissipation of energy is comparable in magnitude to the spectral inverse
flux of energy (Boffetta et al. 2000). In the high Reynolds number limit, this small-
scale dissipation of energy should vanish as is observed when the forcing scale is not
too close to the grid scale (see figure 6a below). The latter choice implies however that
part of the resolution is sacrificed in order to properly resolve the enstrophy cascade.

In order to explore the possible influence of small-scale dissipation on the large
scales of the flow in this context, we analyse and compare the spectral properties of
the following numerical experiments (see Appendix B for details):

(i) A forced, stationary simulation at resolution 5122, taken as a reference and
labelled DNS.II as in Dubos et al. (2001). Energy and enstrophy are injected at
wavenumber kI = 40. The maximum wavenumber is kmax = 230, leaving some space
for the enstrophy cascade to develop. The small-scale dissipation is a hyperdiffusivity
of order p = 8 and the large-scale dissipation required by the inverse cascade to reach
a stationary state is linear in the stream function ψ:

dω

dt
+ ν∗512 ∆8ω = αψ + fω.

Typical vorticity fields of this simulation can be found in Dubos et al. (2001). Its
spectral properties are displayed in figure 5. An acceptable energy inertial range with
Kolmogorov scaling E(k) ∝ k−5/3 is found over a small decade. The poorly resolved
enstrophy cascade presents a steeper slope than Kraichnan’s prediction E(k) ∝ k−3.

(ii) A comparable simulation labeled 128H with a lower resolution 1282 using the
same forcing and dissipations, with the hyperviscosity coefficient ν∗128 tuned to fit the
lower resolution:

dω

dt
+ ν∗128 ∆8ω = αψ + fω.

Now the closeness between the forcing wavenumber kI = 40 and the maximum
wavenumber kmax = 57 raises the problem of energy dissipation.

(iii) A corresponding simulation 128SD using now strain diffusivity. As in § 3, we
use an auxiliary dissipation which we choose equal to the hyperviscosity used in
128H:

dω

dt
+ l20∂i

(
∂jω∂jvi

)
+ ν∗128 ∆8ω = αψ + fω.
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Figure 5. Energy spectrum E(k) in experiments DNS.II (no symbol), 128H (circles) and
128SD (crosses), as a function of the reduced wavenumber k/kI .

This choice makes the comparison more interesting, although lower values of the
hyperviscosity can reduce the energy dissipation while still ensuring numerical stability.

Both simulations 128H and 128SD were initialized with a vorticity field taken from
DNS.II after cutting off wavenumbers higher than kmax = 57. They were run until
they reached a stationary state indicated by time-independent energy and enstrophy.
For 128SD, this required about 1000 eddy turnover times τ ≡ Z−1/2 with Z the
initial enstrophy; 30% of the energy and 50% of the enstrophy were lost during this
initial stage. Simulation 128H stabilized after 3000 turnover times and lost 80% of
the initial energy and enstrophy. These figures could not be reduced by tuning the
hyperviscosity ν∗128.

Simulations 128H and 128SD were run for 6000 turnover times. Both of them are
stationary in the last 3000 and we now analyse their spectral properties averaged over
this time interval. Figure 5 compares the energy spectra of the three experiments. It is
clear that 128SD produces a spectrum much closer to the reference given by DNS.II
than 128H does. The energy spectrum of 128H is too weak at all scales. This could be
expected from the high energy dissipation induced by the hyperviscosity: the energy
that is dissipated at small scales is lost for the inverse cascade and this dissipated
energy is missing in the large scales of the flow. This effect still exists in 128SD but
is strongly reduced.

This interpretation is confirmed by the inspection of the spectral flux of energy ε(k)
(figure 6a). The value of ε(k) for k > kI is the small-scale dissipation of energy. It is
weak for DNS.II, higher for 128SD, and highest for 128H. It is worth noticing that
128H and 128SD have the same hyperviscosity ν∗128. We see here that SD, in addition
to conserving energy itself, is able to limit the dissipation induced by the auxiliary
hyperviscosity. If we examine the inverse energy flux (ε(k) for k < kI ), it appears
that the fluxes in DNS.II and 128SD are quite close to each other while the flux in
128H is much weaker. Furthermore the difference between the fluxes of 128SD and
128H is higher than the excess of dissipation present in 128H. Let us recall here that
the forcing does not inject energy and enstrophy at a prescribed rate but keeps a
Fourier mode constant. Thus the precise rate at which energy is injected is controlled
by the dynamics. We see here that the hyperviscosity not only dissipates energy but
also disturbs the dynamics enough to significantly reduce inverse energy transfers. In
contrast, 128SD remains quite close to the reference DNS.II.
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Figure 6. Spectral flux of (a) energy ε(k) and (b) enstrophy η(k) in experiments DNS.II
(no symbol), 128H (circles) and 128SD (crosses), as a function of the reduced wavenumber k/kI .

We finally display in figure 6(b) the spectral flux of enstrophy η(k). It appears
that 128SD produces an enstrophy flux close to that of DNS.II while 128H is quite
different. Even by tuning ν∗128 a closer match cannot be obtained.

5. Discussion
In the spirit of recent results on the tracer cascade dynamics seen as a gradient

enhancement process, we have studied the dynamics of tracer increments. This enabled
us to consider the cascade locally in space and time, through the scale-to-scale transfers
of tracer variance. The transfers give a detailed picture of the cascade, which we have
discussed. It is much more complex than the average picture obtained in Fourier
space. The strain diffusivity model proved to match this picture rather accurately,
from analytical and numerical points of view, in contrast with isotropic models.
Furthermore, it turns out that this operator can be consistently applied to tracers,
velocity and vorticity, and conserves energy, in contrast with isotropic hyper/eddy
diffusivities. Thus a careful modelling of enstrophy transfers allowed us in this case
to obtain a good representation of energy transfers as well. This proved to have a
substantial impact on the large scales of the flow in a low-resolution simulation where
the enstrophy cascade is almost entirely unresolved and parametrized.

It has been shown in Rupolo et al. (2001) that taking into account the inhom-
ogeneity of geophysical flows in the subgrid-scale parameterization leads to an im-
provement of the large-scale dynamics. What our results suggest is that a comparable
improvement could be obtained by taking into account the anisotropic properties of
turbulent stirring. This is probably more important for active tracers, that react with
the flow, than for passive tracers. Such active tracers are ubiquitous in geophysical
fluid dynamics: potential vorticity, temperature, salinity, etc. It is clear however that
much remains to do. Concerning the numerical aspects of using strain diffusivity, it
appears from our simulations that some efforts must be made in order to correctly
implement and get advantage of it. Interesting ideas exist already for a passive tracer
(Leonard 1997; Moeleker & Leonard 2000), and they should certainly be applied to
vorticity. For geophysical applications, the simple framework of purely barotropic
two-dimensional turbulence is insufficient and progress has to be made towards more
complex situations, such as isoentropic advection in the stratosphere or isopycnal
advection in the oceans.
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Appendix A. Increment dynamics with forcing and diffusion
We now consider a forced and diffused tracer obeying equation (2.4). We obtain

for the tracer increment: (
∂

∂t
+ u± · ∇− κ∆

)
T± = f±T ,(

∂

∂t
+U · ∇− κ∆

)
δT = −δu

2
· ∇(T+ + T−) + δfT ,(

∂

∂t
+U · ∇x + δu · ∇l

)
δT 2

2
= δT ∆xδT + δTδfT .

We now have to rewrite δT∆xδT in a suitable form splitting space and scale contri-
butions. We have, using 2∇lT± = ±∇xT±,

2 ∆lδT
2 = T+∆xT

+ + T−∆xT
− − T+∆xT

− − T−∆xT
+

+2∇xT+ · ∇xT− + ‖∇xT+‖2 + ‖∇xT−‖2,

1
2
∆xδT

2 = T+∆xT
+ + T−∆xT

− − T+∆xT
− − T−∆xT

+

−2∇xT+ · ∇xT− + ‖∇xT+‖2 + ‖∇xT−‖2,

δT∆xδT = T+∆xT
+ + T−∆xT

− − T+∆xT
− − T−∆xT

+

= ( 1
4
∆x + ∆l)δT

2 − (‖∇xT+‖2 + ‖∇xT−‖2).

Collecting terms we obtain equation (2.10). It is actually possible to obtain an
analogous equation for any moment of δT . Using Newton’s binomial formula and
similar arguments, we obtain(

∂

∂t
+U · ∇x + δu · ∇l − κ( 1

2
∆x + 2 ∆l)

)
δTn

n

= δTn−1δfT − (n− 1)δT n−2(η+ + η−).

Appendix B. Numerical parameters
The parameters used in the numerical simulations presented in the paper are

summarized in table 1. The equilibrium values (§§ 2 and 4) or initial values (§ 3) of
energy E and enstrophy Z are provided as complementary information.

We use a pseudo-spectral code with doubly periodic boundary conditions and
leapfrog (second-order) time stepping. The simulations discussed have resolution
N × N corresponding to a grid size ∆l = 2π/N and maximum wavenumber kmax.
The small-scale dissipation can be (possibly iterated) Laplacian with hyperviscos-
ity/hyperdiffusivity ν∗/κ∗ used alone or together with strain diffusivity with cutoff
scale l0, expressed here in multiples of the grid size ∆l. The eventual forcing is achieved
by keeping the Fourier mode for the wavenumber kI = (0, kI ) constant, corresponding
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Section Field N kmax ∆t l0/∆x p ν∗, κ∗ α kI E Z

2 ω,T 1024 460 1× 10−4 1 50 1 4 16.9 213
3 ω 512 170 2× 10−4 1 40 1.3 90

θeddy 1 30
θsd 1 8 50
θH2 2 30
θH8 8 50

4 DNS.II 512 230 2.5× 10−5 8 2.8× 104 7 40 750 11× 104

128H 128 57 1× 10−4 8 1000 7 40 100 2× 104

128SD 128 57 1× 10−4 0.5 8 1000 7 40 450 5× 104

Table 1. Numerical parameters.

to an injection scale lI = π/kI = ∆lN/2kI . A large-scale energy sink is then present
in the form of a term proportional to the stream function ψ = −∆−1ω added into the
vorticity equation:

∂ω

∂t
+ ∇ · (uω + l20∇u∇ω) = α∆−1ω − ν∗k−2p

max (−∆)p ω + fω,

∂T

∂t
+ ∇ · (uT + l20∇u∇T

)
= α∆−1T − κ∗k−2p

max (−∆)p T + fT .

The use of strain diffusivity adds in this spectral scheme a computational cost of
roughly 50%, comparable to the cost of Smagorinsky’s model. This cost is probably
lower in real-space-based schemes like finite elements or finite volume methods.
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